The classification of 8-dimensional E-manifolds and Sullivan's conjecture

Csaba Nagy

20 September 2018

E-manifolds

Definition. M is an *E*-manifold if $H_{2k+1}(M; \mathbb{Z}) \cong 0$ for all k.

We will consider smooth, closed, simply-connected, oriented E-manifolds.

Our goal is to give a method to classify 8-dimensional E-manifolds up to diffeomorphism.

Examples.

- Homotopy spheres: $\Theta_8 \cong \mathbb{Z}_2$
- The projective spaces $\mathbb{C}P^4$ and $\mathbb{H}P^2$
- Complete intersections.

Complete intersections

Definition. A subspace $M \subset \mathbb{C}P^{k+4}$ is a *complete intersection* of (complex) dimension 4, if

• there are homogeneous polynomials $f_i \in \mathbb{C}[x_1, x_2, \dots, x_{k+5}]$ for $i = 1, 2, \dots, k$ such that

$$M = \left\{ \underline{x} \in \mathbb{C}P^{k+4} \mid f_i(\underline{x}) = 0 \text{ for all } i \right\}$$

• M is a smooth 8-dimensional submanifold of $\mathbb{C}P^{k+4}$

Theorem (Thom). The diffeomorphism class of M depends only on the degrees of the polynomials f_i .

Conjecture (Sullivan). Two complete intersections are diffeomorphic if and only if they have the same total degree (= the product of the degrees), Pontryagin-classes and Euler-characteristic.

Theorem (Fang-Klaus). The Sullivan-conjecture holds up to homeomorphism for 4-dimensional complete intersections.

Theorem (Crowley-N.). The Sullivan-conjecture holds for 4-dimensional complete intersections for which either $w_2 = 0$ or $w_2 \neq 0$ and $w_4 \neq 0$.

The classification of E-manifolds

The classification of E-manifolds will consist of 4 steps:

- 1. Define an action of $\theta(r, w)$ on E(r, w)
- 2. Compute the group $\theta(r, w)$
- 3. Classify the orbits of the action
- 4. Compute the stabilizers of the orbits

1. Definitions

Definition. For an $r \ge 0$ and $w : \mathbb{Z}^r \to \mathbb{Z}_2$ let

$$E(r,w) = \left\{ (M,\varphi) \middle| \begin{array}{l} M \text{ is an E-manifold} \\ \varphi: H_2(M) \cong \mathbb{Z}^r \\ w_2(M) = w \end{array} \right\} \middle/ \sim$$

where the equivalence relation \sim is orientation-preserving diffeomorphism, compatible with φ .

Remark. If $w, w' : \mathbb{Z}^r \to \mathbb{Z}_2$ are both non-zero, then there is an isomorphism $I : \mathbb{Z}^r \to \mathbb{Z}^r$ such that $w' = w \circ I$, therefore $E(r, w) \cong E(r, w')$.

Definition. For an $r \ge 0$ and $w : \mathbb{Z}^r \to \mathbb{Z}_2$ let

$$T = T(w) \approx D_1 \natural D_2 \natural \dots \natural D_r$$

where each D_i is a D^6 -bundle over S^2 , such that D_i is trivial iff $w(e_i) = 0$, where e_1, e_2, \ldots, e_r is the standard basis of \mathbb{Z}^r (there is a unique nontrivial bundle, because D^6 -bundles over S^2 correspond to elements of $\pi_2(BSO_6) \cong \mathbb{Z}_2$).

Definition. There is a monoid structure on E(r, w), the operation is "connected sum along the 2-skeleton" (denoted by $\#_2$), defined as follows:

 φ determines an embedding $T \hookrightarrow M$:

- The basis elements $e_1, e_2, \ldots, e_r \in \mathbb{Z}^r \cong H_2(M) \cong \pi_2(M)$ are represented by disjoint embedded spheres $S^2 \hookrightarrow M$
- The normal bundle of an S^2 is an element of $\pi_2(BSO_6) \cong \mathbb{Z}_2$, classified by the Stiefel-Whitney class w_2
- Since $w_2(M) = w$, the tubular neighbourhood of the i^{th} sphere is diffeomorphic to D_i
- Therefore the boundary connected sum of the tubular neighbourhoods of the spheres is an embedded copy of T in M (well-defined up to isotopy)

With these embeddings we define $M_1 \#_2 M_2 = (M_1 \setminus T) \cup_{\partial T} (M_2 \setminus T)$.

Definition.

$$\theta(r,w) = \{(\Sigma,\varphi) \in E(r,w) \mid H_4(\Sigma) = 0\} / \sim$$

Example. $\theta(0,0) \cong \Theta_8 \cong \mathbb{Z}_2$.

Proposition. $\theta(r, w)$ is the group of invertible elements in the monoid E(r, w).

2. The group $\theta(r, w)$

Theorem (Crowley-N.).

- $\theta(r,0) \cong \mathbb{Z}^a \oplus \mathbb{Z}_2^b$, where $a = 6\binom{r+2}{5}$, $b = 2\binom{r+3}{4} \binom{r-1}{2} + 2$.
- $\operatorname{rk} \theta(r, w) = a$.
- $\theta(1,1) \cong \mathbb{Z}_4.$

3. Classification of the orbits

Theorem (Crowley-N.). The orbits of the action of $\theta(r, w)$ on E(r, w) are classified by the cohomology ring and the Pontryagin-class p_1 . More precisely, the following are equivalent:

- $M_1 \approx M_2 \#_2 \Sigma$ for some $\Sigma \in \theta(r, w)$.
- There is a ring isomorphism H^{*}(M₁) → H^{*}(M₂) that is compatible with the maps φ^{*}_i : H²(M_i) ≅ Z^r and preserves p₁.

Special cases were proved by Wall (for r = 0) and Schmitt (for any r and w = 0).

4. Inertia groups

Definition. The *(extended) inertia group* of an E-manifold $M \in E(r, w)$ is the subgroup

$$I(M) = \{ \Sigma \in \theta(r, w) \mid M \#_2 \Sigma \approx M \} \le \theta(r, w)$$

Our main tool for calculating inertia groups is the Q-form conjecture.

The Q-form conjecture

Theorem (Q-form conjecture, torsion-free case). Suppose that q is even, and M and M' are simply-connected 2q-manifolds. If there exists

- a stable bundle ξ over some base space B
- a cobordism W between M and M'
- a map $F: W \to B$

such that

- $H_q(B)$ is torsion-free
- $F, f := F|_{M}$ and $f' := F|_{M'}$ are normal (q-1)-smoothings
- $Q(f) \cong Q(f')$

then $M \approx M'$ (in fact W is cobordant to $M \times [0, 1]$, relative to the boundary).

where

Definition. Let ξ be a stable vector bundle over some space B. For a manifold M the map $f: M \to B$ is a normal k-smoothing, if

- $\pi_i(f)$ is an isomorphism for $i \leq k$ and $\pi_{k+1}(f)$ is surjective (that is, f is a (k+1)-equivalence)
- $\nu_M \cong f^*(\xi)$

Proposition. Every manifold M has a canonical k-smoothing $M \to B^k(M)$, where $B^k(M)$ is the $(k+1)^{th}$ Moore-Postnikov stage of the classifying map $M \to BO$ of the stable normal bundle ν_M of M.

Definition. The k^{th} stage of the Moore-Postnikov factorization of a map $f : X \to Y$ is a space $MP_k(f)$ together with maps $f_1 : X \to MP_k(f)$ and $f_2 : MP_k(f) \to Y$ such that

- $f = f_2 \circ f_1$
- $\pi_i(f_1)$ is an isomorphism for i < k and $\pi_k(f_1)$ is surjective
- $\pi_i(f_2)$ is an isomorphism for i > k and $\pi_k(f_2)$ is injective

Examples.

- If $Y \simeq *$, then $MP_{k+1}(f) = P_k(X)$ is a Postnikov-stage of X.
- If $X \simeq *$, then $MP_k(f)$ is the k-connected cover of Y.

Remark. The existence of the normal smoothing $M \to B^k(M)$ shows that the converse of the Q-form conjecture is also true (W can be chosen to be $M \times I$).

Definition. Fix some even positive integer q and a space B with a stable bundle ξ over it. If M is a 2q-dimensional manifold and $f : M \to B$ is a (q - 1)-smoothing, then the *Q*-form of f is the triple

$$Q(f) = (H_q(M), \lambda_M, f_*)$$

where

- $\lambda_M : H_q(M) \times H_q(M) \to \mathbb{Z}$ is the intersection pairing
- $f_*: H_q(M) \to H_q(B)$ is induced by f

Application to inertia groups

Suppose that $M \in E(r, w)$ and $\Sigma \in \theta(r, w)$ and let $M \#_2 \Sigma$. Then $B^3(M) = B^3(M')$, let B denote this space. Let $f : M \to B$ and $f' : M' \to B$ denote the canonical normal smoothings, then $Q(f) \cong Q(f')$. We can use the Q-form conjecture to decide if $\Sigma \in I(M)$:

Proposition. f and f' are bordant over $B \iff \Sigma \in I(M)$.

Theorem (Crowley-N.).

• If $M \in E(0,0)$, then

$$I(M) = \begin{cases} 0 & \text{if } p_1 \text{ is divisible by 8} \\ \theta(0,0) \cong \mathbb{Z}_2 & \text{otherwise} \end{cases}$$

- If $M \in E(1,1)$, $\pi_3(M) \cong 0$ and $w_4(M) \neq 0$, then $I(M) = \theta(1,1) \cong \mathbb{Z}_4$
- If $M \in E(r, w)$, $\cup_2 : H^2(M) \times H^2(M) \to H^4(M)$ is trivial and $p_1 = 0$, then I(M) = 0
- The subgroup $I(M) \leq \theta(r, w)$ only depends on \cup_2 and p_1 .

Proof of the Sullivan-conjecture

Theorem (Crowley-N.). The Sullivan-conjecture holds for 4-dimensional complete intersections for which either $w_2 = 0$ or $w_2 \neq 0$ and $w_4 \neq 0$.

Proof. (In the case $w_2 \neq 0, w_4 \neq 0$)

- Such complete intersections are in E(1, 1).
- If the invariants of two complete intersections agree, then they are in the same orbit of $\theta(1, 1)$.
- By the previous theorem the stabilizer of this orbit is $\theta(1,1)$. Therefore the orbit has only one element, so the complete intersections are diffeomorphic.